If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3x^2+23x+41=0
a = 3; b = 23; c = +41;
Δ = b2-4ac
Δ = 232-4·3·41
Δ = 37
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(23)-\sqrt{37}}{2*3}=\frac{-23-\sqrt{37}}{6} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(23)+\sqrt{37}}{2*3}=\frac{-23+\sqrt{37}}{6} $
| (D^4-49)y=9 | | 6+-3j=15 | | 15-8s=-10s-17 | | -15-17d-20=13-20d | | 0.25(25x+1.5(x-4))=-x | | |n+5|=-12 | | 8-(6-9)=x | | 4=n/9+3 | | 5x–9x–12=-72 | | 11j=-18+12j | | 6(5x+7)=162 | | x^2+2x+x=24 | | 3-3m=-3-2m | | 1=x/5+3 | | -8−2z=-z | | -8-10b=-2b+10-10b | | -2(y+3)=-7y+19 | | 25+0.12p=29.46 | | 5n+1=51 | | -1/3y=-5/24 | | -6-5u=-6u-5 | | -4n-1=-9 | | x=2-2+3-2 | | 6−5u=-6u−5 | | 6p-6=4p+16 | | 2c=8c−6 | | n/8-4=-3 | | a➗5+6=10 | | -8-5t=10-3t | | -2s=10−4s | | y=2+1/4 | | 180=(3x+7)+(4x-3) |